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Various external and internal symmetries (exact and
approximate) of physical system have been discussed and
various observed conservation laws have been elaborated.
The connection between these two apparently
uncorrelated properties of physical systems (i.e. the
symmetries and conservation laws) have been analyzed
classically as well quantum mechanically.

%TRODUCTION

Eerplexed and troubled by the apparent diversities @mplexities of Nature, man at

an early stage of his awakening conceived the natioultimate harmony and symmetry of
this universe. It is the very idea of symmetriesohitenables us, right upto the present day, to
bring order into the most sophisticated complexnaimeena. Symmetry is one idea by which
man, through ages, has tried to comprehend andecoeder, beauty and perfection. The
simplicity which the physicists have come to expettNature, has been sought almost
exclusively in terms of symmetries rather than ieladynamics. In many cases the use of
symmetries is essential either because the systaraniplicated and we cannot perform the
exact calculations easily or because a consistgnardical theory of the concerned
phenomena does not exist. The generalization ofnstnesand Gellman’s totalitarian
principle: ‘Anything not formidable is compulsorg exist’; gave rise tomany discoveries in
physics in generaland particle physics in particidgarting from neutrinos to galaxies.

A remarkable fact about all the physical systenthéssymmetries or the invariances they
possess under certain transformations. Some of thgametries are exact and some are only
approximate. When we refer to a symmetry as exasinean that no violation has been so far
observed. It may be possible that future experimgéihshow that a symmetry now thought as
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exact is really only approximate. The examples>afce external symmetry (based on space
and time) are invariance of a physical system umdtations and translations in space and
time due to the isotropy and homogeneity of spamktame. An example of an approximate
symmetry is the symmetry under space reflectionoter striking fact about nature is that
among many properties of physical systems thatimootsly change with time, a few
properties remain constant. These constant piiepeappear into many different physical
systems and they are among most fundamental lawghgéics and are known as the
conservation laws. In addition to those propemtibich, so far as we know from experiments,
are exactly conserved, there are other propertiéshware only approximately conserved. The
oldest known exact conservation laws are thosée&t momentum, angular momentum and
energy. A familiar law which holds only approximigtés the conservation of Parity. In the
present paper we will examine the connection batwbese two apparently uncorrelated
properties of physical systemise( the symmetries and conservation laws) classicalyvell
guantum mechanically.

1. The Link Between External Symmetries and Conservation Laws

The connection between these two apparently dissziad and uncorrelated properties of
physical systems was first noticed in classical maics by Jacobi. He showed that for a
classical system describable by classical Lagrandiae invariance of Lagrangian under
spatial translation implies that the linear momentis conserved and its invariance under
rotation implies the conservation of angular moraentA little later Schuz [1] derived the
principle of conservation of energy from the ineamge of Lagrangian under the time
translation. Thus we have

(i) Invariance of L =T —V Lagrangian Under Space Translation
g
Cons#tion of Linear Momentum
(ii) Invariance ofLagrangian Under Rotation
()
Geamvation of Angular Momentum
(i) Invariance ofL Under Time Translation
)
Geanvation of Energy
For a conservative system we have

aL
and pj = %,
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. _dpj _ dL
Thus pl—E_a_q]—

Hence the invariance of Lagrangian under the tasios in generalized coordinaig i.e.
%y
aq;
implies
dp;

Pr=g =0

= Conservation of Linear Momentum
Angular Momentum is Generalized momentum Conjugat@eneralized Coordinate

qj = 6¢ = fidg
aL R
a4, -
AL_p=4D_ (Rotational Invariance)
aql- dt

dL .
== 0 = Conservation of Angular momentum

Energy is generalized momentum conjugate to time
aL 0 dE 0
= > — =
ot dt
Invariance Under time Translatios> Energy Conservation

In classical and quantum mechanics, the conservafidinear momentum, and angular
momentum and energy follows from the propertieslamiltonian under spatial translations,
rotations and the time-translation. In Hamiltonifiammulation the equal status is given to

Coordinates and Momentum

U
6N-Dimensional Space (Phase space) (6N Partiagfifttial Equation of first order)

Classically we have the Hamiltonian as
. Z s 0H
= i Piq. ) p} - 6611

0H dpj .
— =0 = —L = 0 Conservation Laws

an' - dt

2. Quantum Mechanically:
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U

For 2 =0 [AH]=0=> L<Ad>z=0
dt

0

Conservation of observable A

Herglotz gave the complete discussion [2] of thedenstants of motion associated with
the invariance of the Lagrangian under the groumleémogeneous Lorentz transformations
(three rotations about three cartesian coordin#tese Lorentz transformations corresponding
to them, and the four translations in space and)tim

Thus Invariance under Inhomogeneous Lorentz Tramsftions
U
Ten Constants of Motiopi L; ; K; ; E) e (1)

wherek; are the generalized momentum conjugate to cyokcdinates associated with three
Lorentz transformations.

3. Complex Angular Momentum Operator

Ignoring the translations (spatial as well as terappthe remaining generators of the set
given by eqgn. (1) give the six homogeneous tanshtions which constitute Homogeneous
Lorentz Group (HLG). In the light of several newvdlpments in particle physics in last
decade, there has been a new interest in the sfudyG and the universal covering group
SL(2,C), which play important roles in the studyvafrious problems like dual amplitudes in
the Koba-Neilsen form [3,4,5]; harmonic analysis sfattering amplitudes [6]; Regge
classification of hadrons [7] and many supersymimetormulations [8]. Denoting by
L;and K;(j = 1, 2, 3) the generators of purerotations andesfiane rotations (pure Lorentz
transformations), we have already shown [9] thatlinear combinations

Zij = 5 [Li + iK;] .. (2)

and Xyj=3 [L; — iK]] .. (3)

Give the generalized generators of the complex langmomentum operators associated
with the collective relative motion of a body ring aboutit*-axis and moving with
relativistic velocity alongj*-axis. For i=j these generators may be written as

1 .

1 .

which satisfy the Lie algebra of two independengudar momentum operators in complex
spaces I, K) and (, — K) and they have therefore been defined as the coemp® of
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complex angular momentum in these spaces. Sinee thgeratorg; andX; commute, the
representations of HLG can be considered as theetdproduct of two groups generated by
these operators, as has already been shown by 8imskiband Huszar [10].

Combining the components Bf andZ, in the following manner
Z,=7,+1iZ, ... (6)
aﬂd Z_ = Zl - iZZ, e (7)

It can be shown that the space R in which the geoer of HLG may be analysed into a
linear sum of invariant spac&s, in each of which an irreducible representatioweight! of
the group of ordinary rotations is obtained. Thegeation (4), (5), (6) and (7) give the
compact operator formulation to reformulate the 'f@etl-Naimark [8] theory of
representation of the SL (2, C) group which is timversal covering group of HLG. The
representation of the components of complex angmamentum operators constructed by
egn. (4) has already been under taken in our egudiper [11] in the canonical basis of their
Eigen vectors. In our another earlier paper [12, vave used the generators of complex
angular momentum in complex space and derivedeakzations of HLG for nonzero mass,
zero mass and imaginary mass systems.

4. Nothern’s Theorem

The general connection between symmetries andahgecvation laws is given in terms
of Nother’s theorem, which essentially states thatry conservation law is the consequence
of a symmetry of the physical system. In other vg8pmhenever a conservation law holds for a
physical system, the Hamiltonian of the systemigiiant under the corresponding group of
transformations. Its converse is not always true:

Time reversalt - —t does not lead to conservation law.

In general also even if the system has a Hamiltowikich is invariant under a group of
transformations, there may not be a conservatian Téoen the question arises that what types
of symmetries do and what types do not imply thaseovation laws. This question was
answered by Wigner [13] by showing that all symmpetansformations of a quantum
mechanical state can be chosen so as to corregpeittier unitary or anti-unitary operators

I, t >=U(t.ty) la,0 >= vfu=uuf=+1 ... (8)

He also demonstrated that it is the unitary trams&ion which is associated with a
conservation law. Since time reversal operat@nig-unitary, the invariance of the physical
systems under time reversal does not lead to aoaation law.

A set of symmetry transformations of a physical tays has the mathematical
propertiesthat are associated with a group. Thesstitute symmetry groups like rotation
group, translation group, reflection group etc. &ons and translations in space and time
may be made through any angle or through any distéspatial or temporal). For this reason
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there are a continuous infinity of transformatiowkich leave certain physical systems

invariant. These transformations correspond toisantis groups. However, there is one basic
difference between the rotations and translatidiee rotations vary over a finite angular

domain while the translations in space and timeg/ waer an infinite domain and hence the
corresponding groups have many different properties

All the states of a physical system, which can b&ined by operating with all unitary
operatorsl/ on a given state, can be written as linear contioing of a set of basic vectors
which span the subspace of eigen states of Harnalonith the given energy. These vectors
are the basis vectors of the unitary representatfmratorJof the group of transformations.
In general, these vectors are the basis vectoranoirreducible representation. The basis
vectors of an irreducible representation of a sytmrteansformation denote a set of quantum
mechanical states. The symmetries may be finiteinfinitesimal ones. Infinitesimal
symmetries are those in which associated altenmatiwe infinitesimal. Constants of motion
resulting from this sort of symmetries have clagsiounter parts. It may be shown classically
that if G is generator of an infinitesimal canonical tramsfation that leave the Hamiltonian
of the system invariant, the# is the constant of motion (leading to a conseovataw). In
guantum mechanics, the analogous situation is dfcpéar interest when the infinitesimal
character is expressed through linear dependemee mfinitesimal numerical parameter

If O=T1+i € F andF is Hermitian,
then [0, H] = 0 = Fis Constant of Motion .. (9)

In addition to infinitesimal symmetries there atsoafinite symmetries. Unlike classical
mechanics, in quantum mechanics such symmetriesignéficant because if the operator
defining such symmetry is Hermitian, then it cop@sds to an observable quantity. Even if it
is not Hermitian and therefore non-observable,eixistence as constant of motion may
facilitate the search for Eigen states of the sgste

5. Internal Symmetries

Besides the space-time symmetries. xternal symmetries), there are the symmetries
connected with invariance of Hamiltonian under thamnsformations which do not involve
space and time coordinates. These symmetries anerkas internal ones, like rotations in
spin and Isospin spaces. These symmetries are mmoch Mysterious than the external
symmetries There are several following questions associai#i tvese symmetries:

Why Should Baryon Number be Conserved?

Why Are Proton and Neutron so Similar?

Why Should Approximate Symmeries Apply to Hadrons?

What Relates Internal Quantum Numbers to Space-Timesformations?

Why Some Symmetries are Exact and Some Approximate?
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Reply to these questions and the additional utaleling of these symmetries comes
from the study of local Gauge Transformations whietates apparently internal quantum
numbers to space time dependent transformations.

Gauge Transformations::

Hermann Weyl gave these transformation in 1919 (Good Idea Bozfoig@ Time). It
could survive as Symmetry of Maxwell’s Equatiorisrst Unification):

. - 04
H=VXA;E =-V/ ——
ot
()
ox - — -
V—>V’—V—at ;A-> A=A+ Vy
= AF - A* — oty ... (10)

Global And Local Gauge Theories:
Under local Gauge TransformatidH(x,t) - ¥'(x,t) = exp{iex(x, t)}¥ (x, t)

Invariance of Q. E Require§D*¥) — exp{iex(x,t)}(D*¥)
where D¥ = 0" + ieA* (Covariant Derivative) .. (1)
= Space-time Phase Invariance Demands IniegaGauge Field

Interaction is Mediated by MasslessiggaBoson

U
Photon in QEL¥,, = 4, , — A

v U(1) Gauge Group

W*,Z%n Y.M (QFT):  FHY = WVH — WHY 4+ g(WH x W) : SU(2) Gauge Group

Eight Gluons In QCD: SUf3= SU(2)x U(1) Gauge Group .. (12)
U
Nature of Force : Range: Strength: Gaugmu@r Gauge Bosons (Mediators):
E.M. (QED): Long-: 1/137: U(L): Phaso
Weak (Y.M): Shoid{(r) : 1075:SU(2): wt; 70
Strong QCD: hort- 1Fm  14: SP(3  8-gluons
Gravitation: Long% 1. SL(2,C)? Gravitons .. (13)

6. Symmetry Breaking

In some cases the internal symmetries are onlyoappate and they are so badly broken
that these are hardly recognized. To understandseine symmetries are exact and some are
approximate, we must look into dynamics. It cardbae either on a fundamental level or on
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the phenomenological level. More we learn aboutpttoperties of fundamental interactions at
phenomenological level, better we can hope to aypgteshow the symmetries are broken, But
we can be more ambitious and try to understandbtb&en symmetry at the fundamental
level. One of the way to do it is within the framaW of field theory by either constructing a
Hamiltonian containing the terms which are no mamwariant under the relevant
transformationsor by breaking the symmetry spordasly where we construct the
Hamiltonian which has symmetry in question but mgeasuch that its physical states do not
obey this symmetry. Thus we have:

Dynamical Symmetry Breaking (DSBy Adding Massive Term to Hamiltonian
Spontaneous Symmetry Breaking (SSB): Ground Sta¢s dot display Symmetry of H.
U

V(p) = %ﬂzlgolz +%|qo|4 : Global Symmetry — ¢’ = e
For u? < 0:V(¢) is extreme when

¢ =0and i\/(_T“Z)

SSB
U

2
<P >e= tv= i\/(%) Ground State Degeneracy

U

Mass creationn = ev (Higgs Mechanism)(14)

7. Unification Programs

The symmetry or the underlying harmony of Natur@lddead to many attempts of
unification of fundamental forces shown in the ¢alif equation (13). Starting with the
unification of the electricity and magnetism in tfeem of electromagnetic theory and the
attempts of Kaluza and Klein [14] to unify the @temagnetic theory with gravitation, the
first successful program was Salam-Weiberg-Glasdodel [15, 16, 17] of the unification of
weak interaction [gauge group SU(2)] with the elettagnetic interaction [gauge group
U@)l:

(a) Electroweak (SWG) :

SU(2) x U(1) ... (15)

Next grand step in the direction of unificationsHzeen the standard model [15] which
unified weak, electromagnetic and strong intecadiwith gauge symmetries SU(2), U(1)

and SU(3) respectively;
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(b) Standard M odel (Georgi and Glashow) [16,17]:
SU), x SU(2) x U(1) ... (16)
U
Lepton-Hadron Symmetry
U

Conservation of Charge :
Qhad + Qlep =0 (17)

This unification of QCD of SU(3)and QFD of electroweak has been one of the greate
triumphs of physics and believed to be free fronthmmatical in consistencies. It successfully
explained the lepton-hadron symmetry and the ceasien of the total charge. But it has
following several unresolved problems and parad@ssociated with it:

(i) Too complicated

(ii) Contains Many Parameters (18) (3 gauge couplings + 2 CP-
violating 6 parameters,+nine fermion masses+ three Cabibo mixing
anglest+ 1 CP violating Cabbibo phase)

(iii) Does not Explain CP-Violation

(iv) Does not Explain Quantization of Charge

(v) Gravity Not Included

(vi) Does not predict fermion mixing angles

(vii) Does not explain empirical absence of large cosmological terms

This last problem is related with big numiizr: 10%° which appears in many strange
relations between gravitational, cosmological, gmdntum atomic quantities. For instance
[18]:

(a) Ratio of Coulomb and Newton forcedD ~ 10%°

(b) Ratio of observed meta-galaxy and nuclear dgioers:

R (Universe radius)
r(proton ratio)

~D=~ 10%°

(c) Ratio of Salam’s strong gravity and Newton-E&is gravity constants. In gravity of
hadrons (strong gravity) the gravity potential is

0, = G, — .. (A7)

S rc2
i i ‘Al i GM
while universe potential i8 = =,

wherem is the mass of the protoll is the mass of the universeis the proton radius amsis
the radius of the universe. It gives
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ﬂ ~D2 ~ 1080
m

X-D= 10%
T

%~Dz1m0 .. (18)

Diractried to develop a new cosmology includingsthéig numbers.

In view of these short comings of standard modekouuld not be considered as the
ultimate theory of unification of fundamental fosce

(c) Grand Unified Theories (GUTYS)

Visualizing the consequences of spontaneous syminbeeaking, left-right symmetry
and combination of gauge sector and Higg's setii@re came very attractive Grand Unified
Theeories (GUT's) [19,20] as the next step in waifion programs. GUT's have many
attractive features like:

(a) Unified: EM; Weak & Strong Forces with a Single couplingnStant
(b) Explained: (i) Equality of Charges on Proton and Positron
U
Charge Opera@iis Traceless (generator of Gauge Symmetry)
(if) Dynamical generation of baryon-antibaryon asyetry of the universe
(CP violation)
(iil) Quantization of Electric Charge
U
(iv) Contains Monopoles (21- 24) and Dyons (25-89)ntrinsic Parts
which catalyse baryon number non-conserving maes

Inspite of the remarkable success of GUT’s in amgwesome unresolved difficulties of

Standard Model, there were left some unsettledlpnad in these theories of unification also.
For instance:

(i) Desert Between Weak Interaction Mass Ségle and Unification mass Scal,
2

(i) Z—VZ" <1072 (Gauge Hierarchy Problem)
X

(iii) Gravity Not Included

However some noticeable attempts to include grawitynification have been made by
Kaluza —Klein [14] and Rajput [40].

In order to make an attempt to resolve these diffies of GUT’s, the idea of super grand
unification was put forward to unify gravity moracsessfully with other fundamental forces
(no more step motherly treatment to gravity) andseguently notion of ultimate harmony
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(symmetry) has been visualized in terms of SupemBetry (SUSY) [41-46], Super-gravity
( Sugra) (47, 48) and Higher Dimensional Space €T[88-47] incorporating the natural
framework of Super-Strings [50-55].

ZEFERENCES

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

J. R. Schutz, Cott. Nacbhr 110 (1897).

G. Hergoltz Annals Physik36, 493 (1911).

J. Bars and F. Gurselghys. Rev. D4, 1769 (1971)

I. Montvay, Phys. Rev. D3, 2532 (1971).

G. Domokos, S. Domokos and E. SchonbBtys. Rev. D2, 1026 (1970).
M. Toller, Nuovo Cim53, 671 (1968).

Y. Nambu, Prog. TheoPhys. Suul. 37-38, 368 (1966).

P. Fayet and S. FerraRhyys. Rep. 32, 249 (1977).

B. S. Rajput and K.N. Joshi, Math. Phys. 21, 1579 (1980).

Ya. A. Smorodinskii and M. Huszarheor. Math. Phys. 4, 867 (1970).
B. S. Rajput and K.N. Joshi, Math. Phys. 22, 2486 (1981).

B. S. Rajput, H. C. Chandola and Shuchi Bisht, QaRhys68, 599 (1990).
E.P. Wigner, Phys. Re38, 1567 (1965).

T. Kaluza, Sitzungar Preuss Akad. Wiss K1, 996 (1921

A. SalamPhys. Rev. 82, 271 (1951)84, 426 (1951).

H. Georgi and S. L. GlashoWwhys. Rev. Lett. 32, 438 (1974).

S. WeinbergPhys. Rev. Lett. 19, 1268 (1967).

D’ Sabbata, Lecture in Global Conference, Nagpur (1987)

A.J Buraset. al., Nucl. Phys. B133, 66 (1978).

Goddard & D.I. OliveRep. Prog. Phys. 41, 1357 (1978).

P.A.M. Dirac,Proc. Royal Soc. LondonA113, 60 (1931).

P.A.M. Dirac, Phys. Rewv/4, 883 (1948).

G. ‘t Hooft: Nucl. PhysB190 (1981).

G. ‘t Hooft, B153, 141 (1979).

B.S. Rajputt al, Nouvo Cim.72B, 21 (1982)A104, 97 (1991).

B.S. Rajputt al, Lett. Nuovo. Cim40, 277 (1984)35, 205 (1982).
B.S. Rajputt al, Lett. Nuovo. Cim34, 180 (1982)36, 75 (1983).
B.S. Rajputt al, Journ Math. Phy26, 208 (1985);

B.S. Rajputt al, Prog. Theor. Phy85, 157 (1991)103, 631 (2000).
B.S. Rajputt al, Int. J. Theor. Phys. 32, 357 (1993).

B.S. Rajputt al, Can.J. Phys. 69, 1441 (1991)67, 1002 (1989).

B.S. Rajputt al, Nuovo Cim.106A, 509 (1993):110A, 829(1997);
B.S. Rajputt al, Nuovo Cim.111B, 275 (1996)111A, 1405 (1998).
B.S. Rajputt al, Int. J. of Mod. Phys. A13, 5245 (1999)A16, 235 (2002).



16

35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.

Acta Ciencia Indica, Vol. XLVII-P, No. 1 to 4 (2021)

B.S. Rajputt al, Prog. Theor. Phys. 101, 1165 (1999)106, 235 (2003).
B.S. Rajputt al, Nuovo Cim. 112A, 270 (1999)104A, 337 (1991).
B.S. Rajputt al, Int. J. Theor. Phys. 39, 2457 (2000)40, 1327 (2001).
B.S. Rajputt al, Int. J. Mod. Phys. A16, 235 (2002).

B.S. Rajputt al, Int. J. Theorr. Phys. 42, 2090 (2003)41, 451 (2002).
B.S. RajputJourn. Math. Phys. 25, 351 (1984).

P. Fayet and S. Ferrakhys. Rep. C32, 249 (1977).

J. Wess and J. Bagger, Super-symmetry and Supergr@iiyceton University) (1983).
B. S. Rajputt al, Phys. Rev. D43, 3550 (1991);

. S. Rajputt al, Int. J. Theor. Phys. 39, 2029 (2000);

. S. Rajputt al, Europhys. Lett. 11(8), 719 (1990).

. S. Rajputt al, Prog. Theor. Phys. 102, 843 (1999).

. Ferrara and J. Taylor, Supergravity, World Scien(ifb83)

B. S. Rajputt al, Int. Journ. Theo-Phys 41, 1107 (2002).

B.S. Rajputt al, Lett. Nuovo Cim. 43, 219 (1985)40, 277 (1984).
B.S. Rajputt al, Lett. Nuovo Cim. 43, 219 (1985)40, 277 (1984).
B.S. Rajputt al, Prog. Theor. Phys. 80, 277 (1988).

B.S. Rajputt al, Can. J. Phys. 68, 599 (1990)67, 645 (1989).

B.S. Rajputt al, Nuovo Cim. B72, 21 (1982);

B.S. Rajputt al, Jour. Math. Phys. 23, 1964 (1982).

B.S. Rajputt al, Phys. Lett. B105, 281 (1981)B113, 183 (1982).

w U © W



